Slot Waveguide Array
- Waveguide Slot Array With Cavities
- 3d Printed Waveguide Slot Array Antennas
- Waveguide Slot Array Antenna
- Waveguide-slot Array Antenna Designs For Low-average-sidelobe Specifications
- Silicon Slot Waveguide
- Slot Waveguide Array Calculator
This example shows how to analyze the performance of a slotted waveguide antenna.
Define parameters and Create a slotted waveguide
A compact substrate integrated waveguide (SIW) antenna array that operates at 28 GHz and 38 GHz is proposed for fifth generation (5G) applications. The proposed array consists of four SIW cavities fabricated on one single layer of substrate. Each cavity implements a rhombic slot and a triangular-split-ring slot, resonating on TE 101 and TE102 modes at 28 GHz and 38. 7.2.3 Waveguide slot array design A sketch of a waveguide slot antenna with the pertinent dimensions is shown in Figure 7-5. The first design consideration is that the slots be resonant so that they provide a resistive load to the (waveguide) transmission line. Slot antennas in waveguides provide an economical way of the design of antenna arrays. The position, shape and orientation of the slots will determine how (or if) they radiate. Figure 3 shows a rectangular waveguide with a drawn with red lines snapshot of the schematic current distribution in the waveguide walls.
Waveguide Slot Array With Cavities
Longitudinal Linear Traveling Wave Slotted Waveguide
The array consists of radiating slots of different electrical lengths. Due to inherent property, each of them will resonate at their own individual resonance frequency. If the slot length and positions are chosen in such a way that the lower cut-off frequency and higher cut-off frequency of the nth slot overlaps with the higher and lower cut-off frequencies of the (n-1)th and (n+1)th slots respectively, then the complete array is expected to give a wide band response resulting in log-periodic dipole array. Slot Offset on broad wall slots are parallel to the waveguide centerline and they are blocking the transversal current components on the waveguide's broad wall. The polarization of these slots is vertical when the waveguide is held parallel to the ground and the transversal current component is zero on the centerline of the broad wall, however, if one slot moves closer to the narrow walls, the transversal current component increases. Therefore, the radiation amplitude of these slots increases as they move away from the centerline and that is why they are called offset slots. This is the most widely used slot type and this design is taken from [1].
Plot Reflection Coefficient
3d Printed Waveguide Slot Array Antennas
Plot the reflection coefficient for this antenna over the frequency band of 10GHz to 12GHz and a reference impedance of 50 ohms.
Radiation pattern
The most significant effect to be considered in the design process are internal and external mutual coupling between slots. The internal mutual couplings are caused by the partial reflections of the incident electromagnetic wave from succeeding slots in a waveguide. These partial reflections cause a considerable displacement of the EM field inside the waveguide.
Create custom slots in waveguide
a) Transverse Slots array
Waveguide Slot Array Antenna
Transverse slots result in a very high value of their normalized resistance and they cannot be matched to the characteristic waveguide impedance. So, they have no practical importance.
b) X shape slots creation
The cross(X) slots can generate a circular polarized wave with a good axial ratio performance. The slots are oriented to form an orthogonal pair of slots which eventually generate a circular polarized wave. The theory of cross slots also suggests that the slots should be ideally equal to half of the free space wavelength.
Waveguide-slot Array Antenna Designs For Low-average-sidelobe Specifications
Conclusion
Silicon Slot Waveguide
The models of the Slotted waveguide antenna have been built and analyzed and agree well with results reported from [1].
Slot Waveguide Array Calculator
References
1. Montesinos Ortego, 'Contribution to the design of waveguide fed compound slot arrays by means of equivalent circuit modeling'
2. Zunnurain Ahmad,'Design and Implementation of Quasi Planar K-Band Array Antenna Based on Travelling Wave Structures'